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ABSTRACT

Consider a linear regression model with (p-l) predictor variables

which is taken as the "true" model. The goal is to select a subset of all

possible reduced models such that all inferior models (to be defined) are

excluded with a guaranteed minimum probability. A procedure is proposed

for which the exact evaluation of the probability of a correct decision is

difficult; however, it is shown that the probability requirement can be met

for sufficiently large sample size. Monte Carlo evaluation of the constant

associated with the procedure and some ways to reduce the amount of

computations involved in the implementation of the procedure are discussed.

1. INTRODUCTION

A problem of great interest to many practitioners of linear regression

analysis is that of selecting an appropriate subset of the predictor

variables which adequately describe the variance of the response variable.

Some of the commonly employed techniques are all possible regressions, forward

selection, backward selection and stepwise procedures. These procedures along

with some variations and computational methods are given in Draper and Smith

(1966). Several criteria for defining the best set of predictor variables and

*This research was supported by the Office of Naval Research contract

N00014-75-C-0455 at Purdue University. Reproduction in whole or in part
is permitted for any purpose of the United States Government.
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various techniques for selecting the best set have been discussed in a

nice expository paper by Hocking (1976). A brief review of these methods

is also given by Thompson (1978). However, these techniques do not have

an accompanying probability guarantee for selecting the best set; moreover,

the measures of goodness of models are based on the data. Formulation of

this problem in the framework of the multiple decision subset selection

procedures of Gupta (1956, 1965) has been recently considered by Arvesen

and McCabe (1975), Gupta and Huang (1977), and McCabe and Arvesen (1974).

We adopt the same framework here. For details of the general subset

selection theory, see Gupta and Panchapakesan (1979).

Formulation of the problem is given in Section 2. In the next section,

a procedure is proposed and the infimum of the probability of a correct

decision (PCD) is expressed in terms of the models obtained by dropping one

predictor variable at a time. Section 3 discusses asymptotic results and

establishes the (asymptotic) least favorable configuration for PCD. However,

this still does not make the calculation of the necessary constant easy. The

next section describes a Monte Carlo method of determining the constant. A

few facts which can be effectively used in reducing the amount of computations

needed in implementing the procedure are discussed in Section 5.

2. FORMULATION OF THE PROBLEM

Consider the model

Yj = 00 + olxjl +...+ xp_iXj,p. l + Ej, j = l,...,N (2.1)

where xj r, j = 1,...,N, are fixed levels of the predictor variables

xis .... IXp1 , the i are unknown parameters, and the E are independent

normal random variables with mean zero and variance a . Let

'= (Y l.... YN' ' (_ ... E Bp-) ' = (E1  ... 9EN)'

1' = (1..... l), and xi (X= i ... xN),p-l. Then the model

(2.1) can be written in the familiar matrix form

Y = XB + E (2.2)

where X = (1 xl .. "p-l ) and the rank of X is assumed to be p < N.

It is assumed that (2.2) represents the "true" model. We wish to compare
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with this true model all the models that can be obtained by taking only

some of the predictor variables. In order to define inferior models, we

need a measure of goodness of a model. For any fixed a = O,l .. p-l,

consider all the (P-l) subsets of the set of predictor variables

{xI .... PXp I}and the corresponding reduced models obtained from (2.2).

Associated with these reduced models are the multiple correlation coeffi-

cients Ri  i = 1,2 ,...,(P~l). The indexing of these reduced models

can be done in an arbitrary manner. Let iE. = E(I-R i  ). Then the
1,c iCz

goodness of a reduced model is defined by comparing ei, for the model

with the parameter ol,p-l of the true (full) model.

Definition 2.1. A reduced model whose associated parameter 0. is

said to be inferior if e lp- l < 6" e i , c, where 6* E (0,1) is a specified

constant.

It is to be noted that comparison of models based on 6i  is equiva.ent1,0a

to that based on the expected residual sums of squares in the ANOVA of these

models. However, it is more practical to fix 6* in relation to multiple

correlation coefficients as they are unit-free.

The true model is, of course, the best model. While eliminating the

inferior models, we do not want to overly reject good models. Formally stated,
our goal is: Select e subset of all possible models with preferably a large

subset size so that all the inferior models are excluded from the selected

subset of models with a guaranteed minimum probability P* (0 < P* < 1).

Definition 2.2. Model A is said to be a submodel of Model B if the set

of predictor variables of A is a subset of that of B.

Since the multiple correlation coefficient for a model cannot be smaller

than the coefficient for any of its submodels, we make the following remark.

Remark 2.1. If any model is inferior, then all its submodels are

inferior.

The number of inferior models, t,, is unknown. Of course, 0 < tI < t-l,

where t = 2P-1-1 . Let Q(tl) denote the set of all parametric configurations

that give rise to exactly t1 inferior models and let = U Q(tl).

................

ttl

I. J

. .
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We now propose a procedure based on the sample multiple correlation

coefficients for the different models. Let R. denote the samplecoefficient

corresponding to the model associated with i and set i 1 - R1

3. PROCEDURE a

The proposed procedure a is: exclude from the selected subset any

model for which

c (3.1)

where the constant c = c(N,p,P*) > 6* is determined such that P(CDIR), the

probability of a correct decision using 2, satisfies the inequality

P(CD(.) > P*. (3.2)

We first note that if any model is excluded by e, then all its

submodels are also excluded. Further, we need only to determine the ratio

c/6" = d (say).

For a parametric configuration in s(tl),

P(CDIq) I Pr{e i,p-2 > do 1 , p1' 1..... p-l}. (3.3)

The above inequality is obvious because of Remark 2.1 and the fact that

the right-hand side of (3.3) is the probability of a correct decision when

t = t-l. Consequently,

inf P(CDI1,) = inf Pr{ i,p_ 2 I d ol,p_l , i = 1,...,p-l}. (3.4)

Let X M denote the matrix obtained from X by deleting the column

vector x., and 8(i) denote the vector obtained from a by leaving Oi out.

Consider the (p-1) reduced models given by

w( = X (i ) sh i ) i i t a .. . p -l (3 .5 )

where Ei N(O, 41n) It should be noted that in stating the reduced model
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(3.5), we mean that the model is used for prediction purposes using only the

(p-l) variables of X(i). However, our comparisons of models are made under

the true model assumptions. The expectation of the residual mean square in
2

the corresponding ANOVA evaluated under the true model is G, given by the

result (e) at the end of this section. The reduced model described in

(3.5) reflects this fact.

Now, let SSi denote the residual sum of squares in the ANOVA correspond-

ing to the model with X(i) and let SS0 denote the residual sum of squares in

the ANOVA of the full model. Then we can summarize our discussion thus far

in the following theorem.

Theorem 3.1. For the proceduret defined in (3.1),

inf P(CDIl) > inf Pr{SS i > d SSO , i = 1,... p-l}. (3.6)

Exact evaluation of the infimum on the right-hand side of (3.6) is
difficult. We take recourse to asymptotic theory and try to achieve the

probability requirement in (3.2) for large N in the next section. We state

below a few well-known results in regression theory which we need.

(a) SS. = Y'{l - Xi(Xi X)y)x = Y'QiY, say.
1 - () (i) Ci) ) o -1

(b) SS0 = YI - X(X'X)-IX'}Y = Y'QoY, say,

(c s.i2 ~2 2~
(c) SSi/aO - x2(v, (Xa)'Qi(Xa)/2a ) (under the true model)

2
where v N - p+l and x (V, X) denotes the noncentral chi-square

distribution with v degrees of freedom and noncentrality parameter X.

(d) SSo/aO - x2(vO), the (central) chi-square distribution with
V 0 =N-p degrees of freedom.

(e) : +(XB)'Qi(XB)/v.

(e) a 2 0 2 +

4. ASYMPTOTIC RESULTS

Since our rule is invariant with respect to a > 0, we can assume that

O = 1. Following Arvesen and McCabe (1975), we write Y'QiY =9!
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0,1,..., p-1, where Ui  BiY with BiB! = I and B Bi Qi" Here Bi is

a v x n matrix for i = 1,...,p-1 and B0 is a v0 x n matrix. The joint

distribution of U' = (_O  Uj,.. U is multivariate normal in v0 + (p-1)v

dimensions with mean vector r' = (n, 1 .. ,n ) with ni BiX_,

0,1,... ,p-1, and covariance matrix E (zij) where E B V. Note

that E is possibly singular.

Now, letting

Z i = (SS i - v - ni ni}/,2-v + 4n, ni ,i l, .... p-l,

(4.1)
Z = (SSo 0 )/2 o o, 

(4.1we have

Pr{SS i I d SSO , i = 1,...,p-l}

SSi SSo 2_2VO_ _

> Pr{ > d , , i = ,..... p-l}
2v + 4D

' i +'i dv

= Pr{Z i + > d ) 0  +- I i = l,...,p-l)V2v + 4n' 4~2-,
i~ Di

> Pr{Z + > d! Z0 + - , i = l,...,p-l1.

The last inequality follows from the fact that n!i ni > 0 and

(v + t)//, +2t is strictly increasing in t > 0. Thus we have

Pr SSi >d SSO , i = 1,...,p-l}

Pr{Z i > d -Z + d- , i = l,...,p-}. (4.2)
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It can be easily seen that we have equality in (4.2) when n! ni = 0. Also,

the joint distribution of Z0, Z1,... ,Zp1 does not depend upon no, Dl .... 9p-l

for large N. This shows that the worst configuration (asymptotically) for

Pr{SS i > d SSo, i = 1,...,p-l} is when B = 0. Thus we can achieve the

probability requirement (3.2) for large N if d is determined by

Pr{Z i >d/ Z0 , i = 1,... p-l} = (4.3)

where Z' = (Zo,Z 1 .... 9Zp 1 ) has a multivariate normal distribution with mean

zero and covariance matrix r = (pij) with

ad- tr(. ) = l tr(Q.Qi), i j, ij = , ,p-l,

and

0 1 = 1 j = 1..... p-l.POj 0

5. EVALUATION OF THE CONSTANT

The evaluation of the constant d can be done using an Edgeworth

approximation of order l/4N as discussed by Arvesen and McCabe (1975).
But, as they have remarked, this may be a formidable problem for p > 4 or

5. So we resort to Monte Carlo technique. The steps involved are described

below.

(1) Generate random observations Y1 .... YN from a standard

normal distribution.

(2) Calculate SSi , i = O,l,...p-l.

(3) Form the ratio A = min SS i/SS
l~i<_p-I

(4) Repeat steps 1 to 3 m times retaining the values Al, A2 .... Am.

(5) Denote the ordered Ai by A~l] < ... A[m] .

Then the estimate of d is d = Ar , where r is an integer such that

r/m < (l-P*) < (r+l)/m.
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Based on the experiences of McCabe and Arvesen (1974) with their

problem, it appears that m = 1000 may give adequate estimates.

6. IMPLEMENTATION OF THE PROCEDURE

The procedure R in (3.1) can be restated as follows.

1,: Exclude any model if the corresponding residual sum of squares

SSj > d SSO. The implementation of the procedure is straightforward since

it involves only the evaluations of the residual sums of squares of all the

models. However, it may not be necessary to compute the residual sums of

squares for all the reduced models. It should be remembered that the rejection

of any model implies the rejection of all its submodels. For example, if

we have p-l = 4 predictor variables. We first consider all the one variable

models. Suppose that the models {xl) and {x4 } are selected and the models
{x2 I and {x3 } are rejected. This automatically means that the models

fxl, x2}, {xI , x3}, {x1, x4}, {x2, x4}, (x3, x4 }, {x1, x2, x3), {xl, x2, x4},

{x1, 3 9 x 4}, {x2, x3, x4 and {xl, x2, x3, x4I are selected. It leaves only

{x2, x3 } to be considered next.

7. ACKNOWLEDGEMENT

This research was supported by the Office of Naval Research contract

N00014-75-C-0455 at Purdue University. An earlier version of this paper

was written when the second author was visiting at the Institute of

Mathematics, Academia Sinica, Taipei with the financial support of National

Science Council, Republic of China.

BIBLIOGRAPHY

Arvesen, J. N. and McCabe, G. P. (1975). Subset selection problems for

variances with applications to regression analysis. J. Amer. Statist.

Assoc. 70, 166-170.

Draper, N. R. and Smith, H. (1966). Applied Regression Analysis. New York:

John Wiley.

Gupta, S. S. (1956). On a decision rule for a problem in ranking means.

Mimeo. Ser. No. 150, Inst. of Statistics, Univ. of North Carolina,

Chapel Hill, NC.

1 %.



9

Gupta, S. S. (1965). On some multiple decision (selection and ranking)

rules. Technometrics 7, 225-245.

Gupta, S. S. and Huang, D. Y. (1977). On selecting an optimal subset of

regression variables. Mimeo. Ser. No. 501, Dept. of Statistics, Purdue

Univ., West Lafayette, IN.

Gupta, S. S. and Panchapakesan, S. (1979). Multiple Decision Procedures.

New York: John Wiley.

Hocking, R. R. (1976). The analysis and selection of variables in linear

regression. Biometrics 32, 1-49.

McCabe, G. P. and Arvesen, J. N. (1974). A subset selection procedure for

regression variables. J. Statist. Comput. Simul. 3, 137-146.

Thompson, M. L. (1978). Selection of variables in multiple regression:

Part 1. A review and evaluation. Int. Statist. Rev. 46, 1-19.

.I

a.



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE 11WNin Det. Entered)

4. TTLE(an S~bitt) 5TYPE OF REPORT & PERIOD COVERED

On Eliminating Inferior Regression Models

6 PERFORMING ORG. REPORT NUMBER

_______________________________________Mimeo. Series #81-25
7 AUTI4OA(.) 8 CONTRACT OR GRANT NUMBER:.,

* 4 Deng-Yuan Huang and S. Panchapakesan
ONR N00014-75-C-0455

9. PERFOAMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMEN7 PROjEC- TASK

Purdue University AREA A WORK UNIT NUMBERS

Department of Statistics
West Lafayette, IN 47907

11. CONTROLLING OFFICE NAME AND ADDRESS Q2. REPORT DATE

Office of Naval Research July 1981
Washington, DC 13. NUMBER OF PAGES

14 MONITORING AGENCY N AME a. AODRESS(i! dIio, 1,,'C~I OIIn h(cc) 1S. SECURITY CLASS. (of this . pcr

Unclassified

I.DECL ASSIFICATION DOWNGRADING

I16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release, distribution unlimited.

17. DISTRIBUTION ST, 4ENT (of abstract entered In Block 20. 1/ different from, Report)

18. SUPPLEMENTARY rES

19. KEY WORDS (Co,,rInw. on revrs.1. cd. f ... ss.,y Anld Identify by block ,-,.re)

Linear regression models; eliminating inferior models; multiple correlation;

guaranteed probability of correct decision.

20 Adt AC (Coninue1.~ on r*ees side it necessary and idenity by block n,.mbeI

Consider a linear regression model with (p-1) predictor variables which is
taken as the "true"1 model. The goal is to select a subset of all possible reduced
models such that all inferior models (to be defined) are excluded with a guaran-

teed minimum probability. A procedure is proposed for which the exact evaluation
of the probability of a correct decision is difficult; however, it is shown that
the probability requirement can be met for sufficiently large sample size. Monte
Carlo evaluation of the constanit associated with the procedure and somie ways to
reduce the amount of computations involved in the implementation of the procedure

DD ~ 1473UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (14he Data Icni.,c-l

.. I 7



SECURITY CL A T41II PAGE(W.., D-f. E.W..d)

I are discussed.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEfWhon Date Entod)




